# Overview of the AIRS Science Team Algorithm.



by

Dr. Christopher Barnet

NOAA/NESDIS/ORA

Mar 21, 2005



Complete Notes on remote sounding and the Atmospheric InfraRed Sounder (AIRS) Science Team retrieval methodology are on:

ftp ftp.orbit.nesdis.noaa.gov cd pub/smcd/spb/cbarnet/reference

rs\_notes.pdf remote sounding notes & retrieval theory phys640\_s04.pdf computational methods with chapters on linear and non-linear least squares documentation on the code itself

# **Organizations That Have Contributed to AIRS**



# **Overview of This Talk**

- Introduction to regularization
  - How the theory of remote sensing has evolved.
  - What is the basis for the AIRS methodology.
    - \* Cloud clearing philosophy in an integral component
    - \* Minimization approach is optimized for hyper-spectral sounders.
- Details of the AIRS Science Team implementation.
  - Justification for use of channel sub-sets.
  - Justification for use of trapezoids.
  - Justification for use of finite differences.
- Some post-launch issues
  - Microwave side-lobe corrections
  - Tuning versus Error Term Experiments
- A few details on the code & development system









It is possible to understand the methodology without understanding the details of the equations; however, it still takes lightnin' reflexes and considerable snake-eyed concentration.

In this context:

4

## Notation, a.k.a., How I Learned to Embrace my OCD

- I adopt a notation of linear algebra that denotes the dimensions and row/column indices of the matrices. Yes, there is medication for this.
- For example, the kernel function, K, is a rank-2 matrix, K(n, L) where n is a channel index and L is a parameter index (our pressure grid).
- I will write this matrix as  $K_{n,L}$ . Having explicit indices makes transposes,  $K_{L,n}^T$ , and inverses,  $K_{L,n}^{-1}$ , more obvious.
- It is also useful when programming. Loop indices, n, i, j, k, L, m etc. used in the FORTRAN code correspond to the matrix indices in the theory documents. Obviously, I am now off the medication!
- In this notation an implied summation rule is imposed

$$egin{array}{lll} y_n^T \cdot y_n \ = \ C, & ext{a scalar} \ y_n \cdot y_n^T \ = \ C_{n,n}, & ext{a rank 2 matrix} \end{array}$$

• I also use a superscript i to denote items that are iterated. The concept of iteration evolves during the talk, so some items will begin without the iteration superscript and then will have it later.

# Least Squares (LSQ) Solution

• If we want to solve a linear system of equations of observations  $y_n$ , where n is number of channels using L geophysical parameters,  $X_L$ , we could write the relationship as

$$\boldsymbol{y_n} = \boldsymbol{K_{n,L}} \cdot \boldsymbol{X_L} \tag{1.1}$$

• We can begin by weighting the equation, if desired

$$\boldsymbol{W}_{\boldsymbol{n},\boldsymbol{n}} \cdot \boldsymbol{y}_{\boldsymbol{n}} = \boldsymbol{W}_{\boldsymbol{n},\boldsymbol{n}} \cdot \boldsymbol{K}_{\boldsymbol{n},\boldsymbol{L}} \cdot \boldsymbol{X}_{\boldsymbol{L}}$$
(1.2)

 $\bullet$  Then multiplying by,  $K^T$  we obtain

$$\boldsymbol{K}_{L,n}^T \cdot \boldsymbol{W}_{n,n} \cdot \boldsymbol{y}_n = \boldsymbol{K}_{L,n}^T \cdot \boldsymbol{W}_{n,n} \cdot \boldsymbol{K}_{n,L} \cdot \boldsymbol{X}_L$$
(1.3)

• And the solution is

$$\boldsymbol{X}_{\boldsymbol{L}} = \left[ \boldsymbol{K}_{\boldsymbol{L},\boldsymbol{n}}^{T} \cdot \boldsymbol{W}_{\boldsymbol{n},\boldsymbol{n}} \cdot \boldsymbol{K}_{\boldsymbol{n},\boldsymbol{L}} \right]^{-1} \cdot \boldsymbol{K}_{\boldsymbol{L},\boldsymbol{n}}^{T} \cdot \boldsymbol{W}_{\boldsymbol{n},\boldsymbol{n}} \cdot \boldsymbol{y}_{\boldsymbol{n}}$$
(1.4)

• Note that,  $X_L = K_{L,n}^{-1} \cdot y_n$  is the direct solution but for a non-square matrix  $K^{-1} \equiv [K^T \cdot K]^{-1} \cdot K^T$ .

# Summary of Geophysical Products, $X_L$

| T(p)                                       | vertical temperature profile                                      |  |  |
|--------------------------------------------|-------------------------------------------------------------------|--|--|
| q(p)                                       | vertical water vapor profile ( $\approx 8$ g/kg @ surface)        |  |  |
| L(p)                                       | vertical liquid water profile (f/ AMSU/HSB)                       |  |  |
| $O_3(p)$                                   | vertical ozone profile ( $\approx 8$ ppmv @ 6 mb)                 |  |  |
| $T_s$                                      | surface temperature                                               |  |  |
| $\epsilon( u)$                             | spectral surface emissivity, (e.g., 0.95 @ 800 cm <sup>-1</sup> ) |  |  |
| $ ho_{\odot}( u)$                          | spectral surface reflectivity of solar radiation                  |  |  |
| $P_{ m cld}$                               | cloud top pressure for $\leq 2$ cloud levels                      |  |  |
| $lpha_{ m cld, fov}$                       | cloud fraction for $\leq 2$ cloud levels and 9 FOV's              |  |  |
| $CO_2$                                     | total column carbon dioxide ( $\approx 370$ ppmv)                 |  |  |
| $CH_4(p)$                                  | methane profile ( $\approx 1.65$ ppmv)                            |  |  |
| CO(p)                                      | carbon monoxide profile ( $\approx 0.11$ ppmv)                    |  |  |
| Ancillary Information Needed for Retrieval |                                                                   |  |  |
| $P_s$                                      | surface pressure (f/ AVN forecast)                                |  |  |
| $\theta$                                   | satellite zenith angle                                            |  |  |
| $	heta_{\odot}$                            | solar zenith angle                                                |  |  |
| $\epsilon_{ m cld,  u} \equiv 1$           | spectral cloud emissivity for $\leq 2$ cloud levels               |  |  |

#### The Cost Function

The idea of minimization of a cost function for the solution of linear equations dates back to Gauss (c. 1800). Most methods, include the AIRS Science Team method, minimize a cost function of the form:

$$J = (f_n (X_L) - y_n)^T \cdot N_{n,n}^{-1} \cdot (f_n (X_L) - y_n) + (X_L - X_L^0)^T \cdot H_{L,L} \cdot (X_L - X_L^0)$$
(1.5)

We find the solution of  $\frac{\partial J}{\partial X_L} = 0$ . Since derivatives of the forward model are a function of the parameters, this problem is inherently non-linear. Therefore, we must iterate. For iteration=*i* the solution is given by

$$K_{n,L}^{i} \equiv \frac{\partial f_{n}(X_{L})}{\partial X_{L}}|_{X_{L}^{i}}$$
(1.6)

$$X_{L}^{i+1} = X_{L}^{0} + \left[ K_{L,n}^{T^{i}} \cdot N_{n,n}^{-1} \cdot K_{n,L}^{i} + H_{L,L} \right]^{-1} \cdot K_{L,n}^{T^{i}} \cdot N_{n,n}^{-1} \cdot \left[ y_{n} - f_{n}(X_{L}^{i}) + K_{n,L}^{i} \left( X_{L}^{i} - X_{L}^{0} \right) \right]$$
(1.7)

However, this form can also be derived using linear algebra (similar to Eqn. 1.4) or maximum likelihood (Bayesian probability density functions).

• The non-scattering infrared forward model has components from the surface (mostly linear), the reflected solar component (mostly linear), a complicated, bet very small, down-welling term, and an atmospheric term of the form of a Fredholm integral equation of the  $1^{st}$  kind:

$$f_n(X_L^i) \simeq \int_{\nu} d\nu \cdot \Phi(\nu, \nu_0(n)) \cdot \int_{p} dp \cdot B_{\nu}(T^i(p)) \cdot \frac{\partial \exp\left(-\sum_{\nu'=\infty}^{z(p)} \sum_{i} \kappa_i(\nu, X_L^i, p, \ldots) dz'\right)}{\partial p}$$
(1.8)

- The optical depth for a given gas (denoted by a subscript  $_i$ ),  $\kappa_i$ , is a complex interacting function of all the parameters,  $X_L^i$ , such as temperature  $T^i(p)$ , moisture, ozone, etc.
- $\Phi(\nu, \nu_0(n))$  is our instrument response function
- This equation can be highly non-linear for composition (*i.e.*, moisture, ozone, etc.) retrievals.

#### Damping and the "Background Term"

- The matrix  $H_{L,L}$  is a form of regularization
  - -Prevents inverse from being singular, *i.e.*, it stabilizes the inverse.
  - $-X^{i+1} X^i$  is smaller (*i.e.*, damped) than the LSQ solution (see Eqn. 1.4), which I will denote as  $X^{i+1}(H = 0)$  in these notes.
- The radiances are modified by the right hand term,  $K^i_{n,L}\left(X^i_L-X^0_L
  ight)$ 
  - When H is non-zero, the part that wasn't believed on the  $1^{st}$  iteration,  $X^1(H=0) X^1$ , must be subtracted from the radiances.
  - If this term is neglected then the part that wasn't believed would be introduced into subsequent iterations and the effect would be an un-damped LSQ retrieval,  $X^{i+1}(H=0)$ .
  - This is why, a physical retrieval cannot use the results from a previous physical retrieval  $\Rightarrow$  RULE #1 of Iteration

| year                | authors            | method of regularization                                                                   |
|---------------------|--------------------|--------------------------------------------------------------------------------------------|
| 1943                | Levenberg          | Steepest Descent & Newtonian Iteration                                                     |
| 1963                | Marquart           | Hessian operator, $H = \Delta y \cdot rac{\partial^2 (y_n - f_n(X_L))^2}{\partial X_L^2}$ |
| 1963                | Twomey, Tikhonov   | $H = \lambda \cdot I$ , prevent singularities                                              |
| $\thickapprox 1970$ | Twomey             | $oldsymbol{H}$ minimizes vertical derivatives, $e.g.,  \partial T/\partial z$              |
| 1970                | Backus, Gilbert    | Compute Optimal Vertical Functions f/ sounding                                             |
| 1972                | Conrath            | Trade-off: Vertical Resolution versus $\chi^2$ error                                       |
| $\thickapprox 1970$ | Wark & Fleming     | Use $H =$ co-variance as a constraint                                                      |
| 1976                | Rodgers            | Use a posteriori PDF's as a constraint, $H = S_a^{-1}$                                     |
| 1989                | Eyre               | Formalization of forward model errors in $N_{n,n}^{-1}$                                    |
| 1992                | Hanel, Conrath     | Optimal functions/vertical resolution by SVD                                               |
| 1992                | Hansen             | L-curve, finding optimal $\boldsymbol{\lambda}$ via SVD                                    |
| 1996                | Phalippou          | For $q(p)$ , use relative humidity as a constraint                                         |
| 1997                | Schimpf & Schreier | Use of SVD to determine $\boldsymbol{H}$                                                   |
| 1999                | Li                 | use residuals to derive $\boldsymbol{\lambda}$                                             |
| 2000                | Peckham & Grippa   | Use lapse rate as a constraint                                                             |

# Heritage of Regularization Approaches

# Constraints on AIRS Science Team Algorithm

- Retrieval methodology must be able to handle cloud cleared radiances (CCR's)
  - -Random noise amplification,  $\frac{1}{3} \leq A \ll 3$
  - Large spectrally correlated component
  - -Statistical *a-priori* difficult to implement
- Retrieval should have minimal sensitivity to first guess.
  - Maximize contribution from instrument radiances.
  - Maximize sensitivity to and understanding of climate signals
  - Trade-off: model background states  $\Rightarrow$  to use or not to use.
- Retrieval should not artificially constrain problem.
  - Minimize sensitivity to incorrect statistics, *e.g.*, in frontal zones avoid statistical damping.
  - Trade-off: Stability versus Impact

## Cloud Clearing Methodology (Chapter 7 of rs\_notes.pdf)

This cloud clearing methodology has a long heritage starting from the original papers (Smith, 1968, Chahine, 1974), Chahine, 1975, Chahine, 1977, Chahine *et al.* 1977, McMillin and Dean 1982, Smith *et al.* 1992, Susskind, *et al.* 1998, Joiner and Rokker 2002, Susskind, *et al.* 2003. The fundamental features of the AIRS cloud clearing algorithm are

• Use the J = 9 AIRS cloud scenes,  $R_{n,j}$ , without any *a-priori* constraint, such as preferential grouping, to compute the extrapolation parameters,  $\eta_j$ .

$$\hat{R}_n = \langle R_{n,j} \rangle_j + (\langle R_{n,j} \rangle_j - R_{n,j}) \cdot \eta_j$$
 (1.9)

- Determine the number of cloud *formations* and constrain the number of degrees of freedom for solution of  $\eta_j$  to the number of cloud formations.
- Compute both CCR's and <u>error estimates</u> for the CCR's,  $\delta \hat{R}_n \delta \hat{R}_n$ , specifically taking into account the noise amplification induced by the linear extrapolation and the spectrally correlated component of the radiance error due to error covariance of the  $\eta$ 's,  $\delta \eta_j \delta \eta_j^T$ .
- Compare the clear state estimate with the AIRS retrieval products and reject cases that violate any of the assumptions of cloud clearing.

$$J = \left( f_n \left( X_L^i \right) - y_n \right)^T \cdot N_{n,n}^{-1} \cdot \left( f_n \left( X_L^i \right) - y_n \right) \\ + \left( X_L^i - X_L^0 \right)^T \cdot H_{L,L} \cdot \left( X_L^i - X_L^0 \right)$$
(1.10)

- We can compute the error in cloud cleared observations,  $\delta \hat{R}_n \delta \hat{R}_n$  very well.
- We can estimate errors in the forward model. For parameters held constant,  $X_b$ , the obs-calc error covariance is

$$N_{n,n'}^{-1} = K_{n,b} \cdot \delta X_b \delta X_{b'}^T \cdot K_{b'n'}^T + \delta \hat{R}_n \delta \hat{R}_n$$
(1.11)

- a-priori information enters the system through statistical estimates of  $\delta X_b \delta X_{b'}^T$ 
  - In the sense of estimates of errors in  $X_L^0$
  - In the sense of null space errors, the minimum allowed value of  $\delta X_b \delta X_{b'}^T$
- But, we also compute the formal errors of the solution,  $(\delta X_L \delta X_L^T)^s$  for each retrieval step = s (details in Section 21.9 of rs\_notes.pdf).

## A non-Traditional Look at the Cost Function, 2/3

- $(\delta X_L \delta X_L^T)^s$  from step = s becomes the  $(\delta X_b \delta X_b^T)^{s+1}$  in step = s+1, e.g., we solve for T(p) and  $\delta T(p) \delta T(p)^T$  and then use that error covariance when we solve for q(p),  $O_3(p)$ , etc., in later steps.
- Therefore, an improvement in temperature errors, for example, can be used to improve our moisture retrieval (vice a versa).
- This formulation also brings spectral correlation (*i.e.*, a priori knowledge via the forward calculation) into the solution via  $K_{n,b}(X_L^i)$  on a case-by-case basis.
  - Spectral correlation is a function of other state parameters. For example, temperature lapse rate changes sensitivity of all the composition derivatives.
  - -N equations of  $y_n$  changed into N new equations:  $N_{n,n'} \cdot y_{n'}$ .
  - This is a powerful concept that when used properly
    - \* allows separation of mixed signals, e.g., T(p) and  $CO_2$
    - \* minimizes sensitivity to biases, e.g., surface effects  $(T_{skin}, P_{surf}, \text{emissivity})$  in T(p) retrieval.

#### A non-Traditional Look at the Cost Function, 3/3

• We can compute H from information content of  $(K^T N^{-1} K)$  by singular value decomposition (SVD, a.k.a. empirical orthogonal functions (EOF's) see Section 21.3, rs\_notes.pdf)

$$\Lambda_{k,k}^{i} \equiv U_{k,L}^{T^{i}} \left[ K_{L,n}^{T^{i}} \cdot \left( N_{n,n}^{s} \right)^{-1} \cdot K_{n,L}^{i} \right] \cdot U_{L,k}^{i} \cdot$$
(1.12)

- $\Lambda^i_{k,k}$  is diagonal with elements equal to  $\lambda_k$
- When  $\lambda_k^i \gg 1$  the terms are well determined.  $K_{n,L}^i \cdot U_{L,k}^i$  are new Jacobians with very high signal to noise: H = 0
- When  $\lambda_k^i \to 0$  the observations have no influence on the solution:  $H \to \infty$  and components of  $X_L^{i+1} \to X_L^0$
- When  $\lambda_k^i$  is small and significant we add a  $\Delta \lambda_k^i$  (details in Section 21.4 of rs\_notes.pdf) which is equivalent (see Section 21.8, rs\_notes.pdf) to adding a case dependent  $H^i$ given by

$$\boldsymbol{H}_{\boldsymbol{L},\boldsymbol{L}'}^{\boldsymbol{s},\boldsymbol{i}} = \boldsymbol{U}_{\boldsymbol{L},\boldsymbol{k}}^{\boldsymbol{i}} \cdot \boldsymbol{\Delta} \boldsymbol{\Lambda}_{\boldsymbol{k},\boldsymbol{k}}^{\boldsymbol{i}} \cdot \boldsymbol{U}_{\boldsymbol{k},\boldsymbol{L}}^{T^{i}}$$
(1.13)

- SVD determines the optimal fraction of the *a priori* information to use..
- We think this is more robust than using ensemble statistics of I cases to compute a static *a priori* covariance  $S_a \equiv \delta X_{L,i} \delta X_{i,L}^T$

# **Overview of the AIRS Multi-spectral Physical Retrieval System**



The atmospheric state,  $X_L^s$ , and the error estimate of that state,  $\delta X_L^s$ , are used to minimize the residuals in observed minus computed radiances in each retrieval step=s.



It feels like this, eh?

- Utilize microwave-only product (MIT maximum likelihood algorithm  $\Rightarrow$  $T(p), q(p), T_{skin}$ ) to estimate the infrared clear radiance estimate for initial cloud clearing.
- Utilize eigenvector regression (NOAA/NESDIS) to provide the first guess state for the physical algorithm. This solution contains the fine vertical structure information based on  $\approx 1600$  AIRS channels..
- Utilize a physical retrieval (NOAA/GSFC) to improve the state.
  - 1. Microwave and infrared observations are used in each step.
  - 2. Use microwave observations and products to reject cases with poor cloud clearing.
    - Reject if Obs-Calc of coupled retrieval is too large
    - Perform microwave-only retrieval using coupled retrieval as first guess. Reject if  $\Delta T(p)$  is too large.
  - 3. All observations are used at their native angles of observation and the forward model is computed at the correct angles.
  - 4. For cloud clearing we do perform a local angle correction of 1.1° with each 3 x 3 set of FOV's

# Philosophy of AIRS Physical Algorithm

- 1. Embed an information content analysis into each step to determine the optimal damping (regularization) for each case.
  - Cloud cleared radiances are both case and iteration dependent.
  - Propagate a formal geophysical error estimate through each step.
  - Compute an estimate of the *a-priori* covariance at each step.
- 2. Take advantage of parameters that are separable (*i.e.*, pay attention to spectroscopy and radiative transfer features in our spectrum)
  - For example, we can solve for  $T_{surf}$  holding all other variables (e.g., water) constant, since  $T_{surf}$  is quite linear. Steps are denoted as a superscript s in my notes.
  - BUT, if a step is repeated (*e.g.*, when an error estimate has been improved) NEVER use the products from the previous step.
- 3. Select channels that are "spectrally pure", that is
  - Have a high sensitivity to what is being solved for.
  - Have a low sensitivity to the parameters held constant (*i.e.*, keep our error estimates small when separating variables)
- 4. Use optimal number of parameters for each retrieval step are determined in simulation (Backus-Gilbert optimization) to speed up processing.

# Channels used in the AIRS retrieval algorithm



# Justification for Vertical and Spectral Functions

- A fine vertical grid is required for accurate computation of the absorption coefficients,  $\kappa_i(\nu, p(z), X^{s,i}, \theta)$  and radiances.
- There are about 85 independent pieces of information in AIRS (2378 chl's), IASI (8461 chl's), and CrIS (1305 chl's)
- Solving for 100 vertical levels of T(p), q(p), O<sub>3</sub>(p), CO(p), CH<sub>4</sub>(p), and CO<sub>2</sub>(p) wastes time and can destabilize the retrieval.
- If we allowed 2378 emissivities, there would be nothing left to solve for.
- Functions,  $F_{L,j}^s$ , and associated parameters,  $A_j^{s,i}$ , are chosen in a trade-off between resolution and stability for each retrieval step. Analogous to Backus & Gilbert (1970) trade-off. Also discussed in Hanel, (1992).
- Major issue for code execution time and improves stability.

#### Formulation of Vertical and Spectral Functions

- Temperature functions are additive vertical trapezoids.
- Composition functions are multiplicative vertical trapezoids.
  - $ext{Radiance kernel is} \propto \exp(\kappa(X_L^{s,i})),$
  - $-\,\kappa(X_L^{s,i}),\, ext{is the optical depth} \propto X_L^{s,i}.$
  - Therefore, composition variables are more linear in  $\ln \left( X_L^{s,i} 
    ight)$

$$- \partial \ln(X_L^{s,i}) \propto rac{\partial X_L^{s,i}}{X_L^{s,i}} ext{ which is a \% change in } X_L^{s,i}.$$

- Emissivity functions are additive spectral triangles.
- A scaling parameter  $\hat{A}_{j}^{s}$  is used to create dimensionless parameters and adjust scale between different functional groups (*e.g.*, when mixing T(p), q(p), and emissivity in one retrieval).
- The Jacobian,  $K_{n,L}^{s,i}$ , becomes a set of new derivatives,  $S_{n,j}^{s,i}$ , in which groups of parameters in L space are grouped together in J space.
- Sub-sets (e.g., temperature) of vertical and spectral functions must sum to unity:  $\sum_{j} (F_{L,j}^{s}) = 1$  for a group of functions.

# Example of functions, $F_{L,j}$ , for T(p(L)) retrieval



#### Kernel Function replaced by Sensitivity Matrix

• For additive functions the S-matrix is given by

$$S_{n,j}^{s,i} \equiv \frac{\partial f_n \left( X_L^{s,i} + F_{L,j}^s \cdot A_j^s \right)}{\partial A_j^s} \cdot \Delta \hat{A}_j^s$$
(2.1)

$$\simeq f_n \left( \boldsymbol{X}_L^{s,i} + \boldsymbol{F}_{L,j}^s \cdot \hat{\boldsymbol{A}}_j^s \right) - f_n \left( \boldsymbol{X}_L^{s,i} \right)$$
(2.2)

• For multiplicative functions the S-matrix is given by

$$S_{n,j}^{s,i} \equiv \frac{\partial f_n \left( X_L^{s,i} \cdot \left( 1 + F_{L,j}^s \cdot A_j^s \right) \right)}{\partial A_j^s} \cdot \Delta \hat{A}_j^s$$
(2.3)

$$\simeq f_n \left( X_L^{s,i} \cdot \left( 1 + F_{L,j}^s \cdot \hat{A}_j^s \right) \right) - f_n \left( X_L^{s,i} \right)$$
(2.4)

- Analytic derivatives on the RT grid do not help our algorithm,  $\delta$  function perturbations are sub-optimal (Backus+Gilbert).
- Single sided finite difference is currently used, we will explore the benefit of double-sided and dynamically scaled derivatives someday. This is not our biggest error source!!!

The minimization equation for both additive and multiplicative forms is given by

$$\Delta A_{j}^{s,i+1} \equiv A_{j}^{s,i+1} - A_{j}^{s,0} \\ = \left[ \left( S_{j,n}^{T^{s,i}} \right) \cdot \left( N_{n,n}^{s} \right)^{-1} \cdot S_{n,j}^{s,i} + H_{j,j}^{s,i} \right]^{-1} \cdot S_{j,n}^{T^{s,i}} \cdot \left( N_{n,n}^{s} \right)^{-1} \cdot \left[ y_{n} - f_{n}(X_{L}^{s,i}) + S_{n,j}^{s,i} \left( A_{j}^{s,i} - A_{j}^{s,0} \right) \right]$$
(2.5)

And to return to parameter L space is done by combining the components and dividing by the scaling factors,  $\hat{A}_{i}^{s}$ .

$$\Delta X_{L}^{s,i+1} = \sum_{j} F_{L,j}^{s} \cdot \left( \Delta A_{j}^{s,i+1} \cdot I_{j,j} \cdot \Delta \hat{A}_{j}^{-1^{s}} \right) \quad \text{Additive}$$
(2.6)  
$$\Delta X_{L}^{s,i+1} = \prod_{j} \left( 1 + F_{L,j}^{s} \right) \cdot \left( \Delta A_{j}^{s,i+1} \cdot I_{j,j} \cdot \Delta \hat{A}_{j}^{-1^{s}} \right) \quad \text{Multiplicative}$$
(2.7)

#### Finally, we regularize

• We perform the information content analysis on our new functions

$$\Lambda_{k,k}^{s,i} \equiv U_{k,j}^{T^{s,i}} \cdot \left[ S_{j,n}^{T^{s,i}} \cdot \left( N_{n,n}^s \right)^{-1} \cdot S_{n,j}^{s,i} \right] \cdot U_{j,k}^{s,i}$$
(2.8)

• This transformation is equivalent to new Jacobians,  $S_{n,j}^{s,i} \cdot U_{j,k}^{s,i}$ 

• We determine  $\Delta \lambda$  as follows (see Section 21.8, rs\_notes.pdf)

 $= \infty$ 

$$\Delta \lambda_k^{s,i} = 0 \qquad \qquad \text{for } \lambda_k^{s,i} \ge \lambda_c^s \tag{2.9}$$

$$= \sqrt{\lambda_k^{s,i}} \cdot \left(\sqrt{\lambda_c^s} - \lambda_k^{s,i}\right) \qquad \text{for } \lambda_k^{s,i} < \lambda_c^s \tag{2.10}$$

for 
$$\lambda_k^{s,i} \leq (0.05)^2 \cdot \lambda_c^s$$
 (2.11)

#### And Solve for Our Parameters

• We solve for the new parameters

$$\Delta A_{j}^{s,i+1} = U_{j,k}^{s,i} \cdot \Delta B_{k}^{s,i+1}$$

$$\Delta B_{k}^{s,i+1} = \left(\frac{1}{\lambda_{k}^{s,i} + \Delta \lambda_{k}^{s,i}}\right) \cdot U_{k,j}^{T^{s,i}} \cdot S_{j,n}^{T^{s,i}} \cdot \left(N_{n,n}^{s}\right)^{-1} \cdot \left[y_{n} - f_{n}(X_{L}^{s,i}) + S_{n,j}^{s,i}\left(A_{j}^{s,i} - A_{j}^{s,0}\right)\right]$$

$$(2.12)$$

- Note that the change in the parameters,  $\Delta A_{j}^{s,i+1}$  associated with original functions,  $F_{L,j}^{s}$  is equivalent to a transformed parameter change,  $\Delta B_{k}^{s,i+1}$ , associated with a new function  $G_{L,k}^{s,i} = F_{L,j}^{s} \cdot U_{j,k}^{s,i}$ .
- It is illustrative to visualize the transformed functions.

#### Example of SVD optimal T(p) Functions

: Profile 977 Temperature #1/2 Eigenfunctions,  $\lambda_m = 4.0000$ 



For temperature functions, the new set of vertical functions,  $F_{L,j}^s \cdot U_{j,k}^{s,i}$  are shown for the AIRS temperature retrieval information content analysis. In this case, ten functions of the 23 functions are determined to better than 5%.

# Example of SVD optimal q(p) Functions



For water functions, the new set of vertical functions,  $F_{L,j}^s \cdot U_{j,k}^{s,i}$  are shown for the AIRS temperature retrieval information content analysis. In this case, six functions of the ten functions are determined to better than 5%.

: Profile 977 Ozone Eigenfunctions,  $\lambda_m = 1.7778$ 



For ozone functions, the new set of vertical functions,  $F_{L,j}^s \cdot U_{j,k}^{s,i}$  are shown for the AIRS temperature retrieval information content analysis. In this case, three functions of the seven functions are determined to better than 5%.

## **Propagation of Formal Errors**

- The uncertainty in  $\Delta B_k^{s,i+1} \left( \Delta \lambda_k^{s,i} = 0 \right)$  are uncorrelated and equal to  $\left( \lambda_k^{s,i} \right)^{-\frac{1}{2}}$ .
- The fraction of  $\Delta B_k^{s,i}$  solved for is equal to  $\phi_k^{s,i} = \lambda_k^{s,i} / \left(\lambda_k^{s,i} + \Delta \lambda_k^{s,i}\right)$
- The propagated error in B space is the RSS of the transformed first guess error,  $\delta B^{s,0}$ , and the error from the radiances.

$$\delta B_{k}^{s,i+1} = \sqrt{\left(\left(1 - \phi_{k}^{s,i}\right) \cdot \delta B_{k}^{0,s}\right)^{2} + \left(\phi_{k}^{s,i} \cdot \frac{1}{\sqrt{\lambda_{k}^{s,i}}}\right)^{2}}$$
(2.14)

• In  $\Delta A$  space the errors are correlated and can be computed from

$$\left(\delta A_{j}\delta A_{j}\right)^{s,i+1} = U_{j,k}^{s,i} \cdot \left(\delta B_{k}^{s,i}\right)^{2} U_{k,j}^{T^{s,i}}$$
(2.15)

$$\delta A^{s,i+1}(j) \simeq \sqrt{\sum_{k} U^{s,i}(j,k)^2 \cdot (\delta B^{s,i+1}(k))^2}$$
(2.16)

#### **Propagation of Formal Errors**

• The errors in the geophysical products are computed in the root-sumsquared (RSS) sense from parameter errors:

$$\left(\delta X_L \delta X_L^T\right)^{s,i+1} = F_{L,j}^s \cdot \left(\delta A_j \delta A_j\right)^{s,i+1} \cdot F_{j,L}^{T^s}$$
(2.17)

$$\delta X^{s,i+1}(L) \simeq \sqrt{\sum_{j} \delta \left( A^{s,i}(j) \right)^2 \cdot F^s(j,L)^2}$$
(2.18)

• These error estimates can be used to compute  $(N_{n,n}^s)^{-1}$  and, therefore, propagated into the next retrieval step; however, in practice we only keep the diagonal components of these errors.

• It is a bit more complicated than this, due to handling of null space errors,  $\Rightarrow$  but I figure we have ALL had enough equations.

# Some Post-Launch Issues



Now we have the theory, we are ready to work with real data.

# Issues with AMSU's Estimate of CLEAR State

- Microwave side-lobe corrections (SLC's) for the Aqua platform are more complex than the POES platforms and have NOT been applied to date.
- A large microwave tuning (empirical side-lobe correction) has been employed to mitigate SLC issues.
- A poor AMSU first guess has a negative impact on cloud clearing and, therefore, all AIRS products.
- To understand the impact to AIRS products, we are using a model analysis to increase our information content.
  - 1. To assess the impact of AMSU SLC issues on the AIRS products.
  - 2. To assess the need for tuning and/or RTA improvements.
- We are building the ability to bring in MODIS clear pixels co-located to AIRS FOV's to improve our QA & information content.

## **TUNING and MODEL ERROR TERMS**

For discussion, assume a retrieval equation looks like

$$\Delta X_{j}^{s,i+1} = \left[ S_{j,n'}^{T^{s,i}} \cdot \left( N_{n',n}^{s} \right)^{-1} \cdot S_{n,j}^{s,i} + H_{j,j}^{s,i} \right]^{-1} \cdot S_{j,n'}^{T^{s,i}} \cdot \left( N_{n',n}^{s} \right) - 1 \\ \cdot \left[ y_{n} - f_{n}(X_{L}^{s,i}) + \Psi_{n}^{s,i} + T(n) \right]$$
(2.19)

- $S_{n,j}^{s,i}$  is the sensitivity of channel n to parameter  $A_j^s$
- $\Psi_n^{s,i}$  is the background term derived from *a-priori* contribution.
- T(n) is radiance tuning, if applied.

With real data we have other error sources, such as rapid transmittance algorithm (RTA) and spectroscopy errors that we can write as  $E_{n',n}$ .

$$N_{n',n}^s = N_{n',n}^s + E_{n',n}$$
 (2.20)

# Example of RMS Statistics versus RAOB's 32,000 co-located cases from Sep. 2002 to Sep. 2004



These figures provided by Murty Divakarla.

Example of T(p) BIAS Statistics versus RAOB's 32,000 co-located cases from Sep. 2002 to Sep. 2004



These figures provided by Murty Divakarla & Eric Maddy.

# Code Development

- There is one code for AIRS, IASI, and CrIS.
- The retrieval system code is a total of about 106,000 lines of FORTRAN code.
- We have simulation capability (another 24,000 lines of code).
  - Can perform instrument trade studies.
  - Can study retrieval theory in simulation.
  - Simulation can be built from models and/or from AIRS retrieval products.
- Scientific evaluation is built into the code.
  - Each retrieval case can be compared to a reference state (AVN forecast, ECMWF forecast, RAOB, or truth (in simulation)) at every single iteration and step.
  - Diagnostics exist in radiance space and geophysical space.
- There are over 100,000 lines of IDL code for display and analysis of diagnostic output.

Example of Diagnostic Capabilities



#### References for Today's Talk

- Chahine, M.T. 1977. Remote sounding of cloudy atmospheres. II. Multiple cloud formations. J. Atmos. Sci. v.34 p.744-757.
- Chahine, M.T., H.H. Aumann and F.W. Taylor 1977. Remote sounding of cloudy atmospheres. III. Experimental verifications. J. Atmos. Sci. v.34 p.758-765.
- Chahine, M.T. 1975. An analytic transformation for remote sensing of clear-column atmospheric temperature profiles. J. Atmos. Sci. v.32 p.1946-1952.
- Chahine, M.T. 1974. Remote sounding of cloudy atmospheres. I. The single cloud layer. J. Atmos. Sci. v.31 p.233-243.
- Conrath, B.J. 1972. Vertical resolution of temperature profiles obtained from remote sensing radiation measurements. J. Atmos. Sci. v.29 p.1262- 1271.
- Fleming, H.E., M.D. Goldberg and D.S. Crosby 1988. Operation implementation of the minimum variance simultaneous retrieval method. in 3rd Conf. Sat. Meteor. & Oceanography p.16-23.
- Hanel, R.A., B.J. Conrath, D.E. Jennings and R.E. Samuelson 1992. Exploration of the solar system by infrared remote sensing. Cambridge Univ. Press 458 pgs.
- Hansen, P.C. 1992. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review v.34 p.561-580.
- Joiner, J. and L, Rokker 2000. Variational cloud-clearing with TOVS data. Quart. J. Roy. Meteor. Soc. v.126 p.725-748. McMillin, L.M. and C. Dean 1982. Evaluation of a new operational technique for producing clear radiances. J. Appl. Meteor. v.21 p.1005- 1014.

#### References for Non-linear Least Squares (continued)

- Peckham, G.E. and M. Grippa 2000. Improved retrieval of tropospheric temperatures from remote measurement of thermal radiation using the adiabatic lapse rate as a constraint. Quart. J. Roy. Meteor. Soc. v.126 p.749-760.
- Phalippou, L. 1996. Variational retrieval of humidity profile, wind speed and cloud liquid water path with the SSM/I: potential for numerical weather prediction. *Q.J.R.Meteorol. Soc.* **122**, p.327-355.
- Schimpf, B. and F. Schreier 1997. Robust and efficient inversion of vertical sounding atmospheric high-resolution spectra by means of regularization. J. Geophys. Res. v.102 p.16037-16055.
- Smith, W.L., X.L. Ma, S.A. Ackerman, H.E. Revercomb and R.O. Knuteson 1992. Remote sensing cloud properties from high spectral resolution infrared observations. J. Atmos. Sci. v.50 p.1708-1720.
- Smith, W.L. 1968. An improved method for calculating tropospheric temperature and moisture from satellite radiometer measurements. Monthly Weather Review v.96 p.387-396.
- Susskind, J., C.D. Barnet and J.M. Blaisdell 2003. Retrieval of atmospheric and surface parameters from AIRS, AMSU, HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens. v.41 p.390-409.
- Susskind, J., C.D. Barnet and J. Blaisdell 1998. Determination of atmospheric and surface parameters from simulated AIRS/AMSU sounding data: Retrieval methodology and cloud clearing methodology. Adv. Space Res. v.21 p.369-384.
  Twomey, Sean 1996. Introduction to the mathematics of inversion in remote sensing and indirect measurements. Dover Publ. Inc., Mineola NY. 243 pgs.